Polymeric nanoparticles for oral delivery of biopharmaceuticals: an overview

  • Shanmugarathinam Alagarsamy Department of Pharmaceutical Technology, UCE-BIT Campus, Anna University, Tiruchirappalli -620024, Tamil Nadu, India
  • Subhasini Kandasamy Department of Pharmaceutical Technology, UCE-BIT Campus, Anna University, Tiruchirappalli -620024, Tamil Nadu, India
  • Ruckmani Kandasamy Department of Pharmaceutical Technology, UCE-BIT Campus, Anna University, Tiruchirappalli -620024, Tamil Nadu, India
  • Nandhamurugan Ramachandran Department of Pharmaceutical Technology, UCE-BIT Campus, Anna University, Tiruchirappalli -620024, Tamil Nadu, India
  • Gopikrishnan Muthurasu Department of Pharmaceutical Technology, UCE-BIT Campus, Anna University, Tiruchirappalli -620024, Tamil Nadu, India
  • Mukesh Kumar Venkatesan Department of Pharmaceutical Technology, UCE-BIT Campus, Anna University, Tiruchirappalli -620024, Tamil Nadu, India

Abstract

Biopharmaceuticals, cutting-edge medications sourced from living organisms, embody the zenith of therapeutic progress driven by biotechnological breakthroughs. While oral drug delivery is convenient, it proves challenging for biopharmaceuticals due to the complex barriers in the gastrointestinal tract. Their delicate structure and susceptibility to degradation in the gut pose formidable obstacles. This scientific conundrum necessitates innovative solutions to ensure their effectiveness. Pseudomonas aeruginosa's Exotoxin A demonstrates the difficulty in traversing the intestinal epithelium, necessitating innovative strategies. Researchers utilize mucoadhesive, biodegradable polymers like alginate and chitosan to create nanoparticles. These nanoparticles form a protective gel in the stomach's acidic environment, enhancing drug stability and absorption. Chitosan and alginate collaborate in nanoparticle formulations, improving mucosal adhesion and prolonging drug retention. Introducing non-toxic Exotoxin A enhances trans-epithelial transport, validated by in vitro studies on Caco-2 cell monolayers and accumulation in the rat small intestine's lamina propria. Utilizing green fluorescent protein as a model within alginate-chitosan nanoparticles showcases their potential for oral drug delivery. Bacterial toxins play a crucial role in enhancing trans-epithelial transport, endorsing these nanoparticles. This fusion of biotechnology and polymer science offers a promising solution for biopharmaceutical oral delivery challenges, highlighting alginate-chitosan nanoparticles as versatile carriers for transformative drug delivery advancements.

Keywords: Polymeric nanoparticle, Oral delivery, Biopharmaceutical, GI tract

Downloads

Download data is not yet available.

References

1. Walsh G. Biopharmaceutical benchmarks. Nature Biotechnol. 2000;18(8):831-3.
2. Sanchez-Garcia L, Martín L, et al. Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact. 2016;15(33):1-7.
3. Walsh G. Biopharmaceutical benchmarks 2014. Nature Biotechnol. 2014;32(10):992- 1000.
4. Antosova Z, Mackova M, et al. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 2009;27(11):628-35.
5. BCC research. Biologic Therapeutic Drugs: Technologies and Global Markets. 2015; Available from: http://www.bccresearch.com/marketresearch/biotechnology/biologic-therapeutic-drugs-technologies-markets-report-bio079c.html .
6. Grewal I. Emerging protein biotherapeutics. New York: CRC Press; 2009.
7. Leader B, Baca Q, et al. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21-39.
8. Renukuntla J, Vadlapudi A. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1):75-93.
9. Hanas R, Ludvigsson J. Experience of pain from insulin injections and needle‐phobia in young patients with IDDM. Practical Diabetes Int. 1997;14(4):95-9.
10. Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci. 2008;70(3):269-77.
11. Muheem A, Shakeel F, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24(4):413-28.
12. Arbit E, Kidron M, et al Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol. 2009;3(3):562-7.
13. Smart A, Gaisford S, et al. Oral peptide and protein delivery: intestinal obstacles and commercial prospects. Expert Opin Drug Deliv. 2014;11(8):1323-35.
14. Mahato R, Narang A, et al. Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst. 2003;20(2-3):153-214.
15. Herrero E, Alonso M, et al. Polymer-based oral peptide nanomedicines. Ther Deliv. 2012;3(5):657-68.
16. Allen A. Structure and function of gastrointestinal mucus. New York: Raven Press; 1981.
17. Lai S, Wang Y. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158-71.
18. Ensign L, Cone R, et al. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557-70.
19. Kim Y, Ho S. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319-30.
20. Frey A, Giannasca K, et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med. 1996;184(3):1045-59.
21. Corfield A, Carroll D, et al. Mucins in the gastrointestinal tract in health and disease. Front Biosci. 2001;6(10):D1321-57.
22. Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci. 2008;70(3):269-77.
23. Donovan M, Flynn G, et al. Absorption of polyethylene glycols 600 through 2000: the molecular weight dependence of gastrointestinal and nasal absorption. Pharm Res. 1990;7(8):863- 8.
24. Tibbitts J, Canter D, et al, editors. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. MAbs; 2016: Taylor & Francis.
25. Pade V, Stavchansky S. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm Res. 1997;14(9):1210-5.
26. Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2(4):289-95.
27. Carey M, Small D. Micelle formation by bile salts: physical-chemical and thermodynamic considerations. Arch Intern Med. 1972;130(4):506-27
28. Aungst J. Absorption enhancers: applications and advances. AAPS J. 2012;14(1):10-8.
29. Thanou M, Verhoef J, et al. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev. 2001;52(2):117-26.
30. Bai J, Chang L, et al. Effects of polyacrylic polymers on the degradation of insulin and peptide drugs by chymotrypsin and trypsin. J Pharm Pharmacol. 1996;48(1):17-21.
31. Mesiha M, Ponnapula S, et al. Oral absorption of insulin encapsulated in artificial chyles of bile salts, palmitic acid and α-tocopherol dispersions. Int J Pharm. 2002;249(1):1-5.
32. Stojančević M, Pavlović N, et al. Application of bile acids in drug formulation and delivery. Front Life Sci. 2013;7(3-4):112-22.
33. Hwang S, Byun Y. Advances in oral macromolecular drug delivery. Expert Opin Drug Deliv. 2014;11(12):1955-67
34. Bernkop-Schnürch A. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J Control Release. 1998;52(1):1-16.
35. Yamamoto A, Taniguchi T, et al. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm Res. 1994;11(10):1496-500.
36. Renukuntla J, Vadlapudi A. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1):75-93.
37. Hutton D, Pearson J, et al. Mucolysis of the colonic mucus barrier by faecal proteinases: inhibition by interacting polyacrylate. Clin Sci (Lond). 1990;78(3):265-71.
38. Lueßen H, Verhoef J, et al. Mucoadhesive polymers in peroral peptide drug delivery. II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm Res. 1995;12(9):1293-8.
39. Balakrishnan A, Polli J. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm. 2006;3(3):223-30.
40. Hashizume M, Douen T, et al. Improvement of large intestinal absorption of insulin by chemical modification with palmitic acid in rats. J Pharm Pharmacol. 1992;44(7):555-9.
41. Clement S, Still, et al. Oral insulin product hexyl-insulin monoconjugate 2 (HIM2) in type 1 diabetes mellitus: the glucose stabilization effects of HIM2. Diabetes TechnolTher. 2002;4(4):459-66.
42. Kipnes M, Dandona P, et al. Control of postprandial plasma glucose by an oral insulin product (HIM2) in patients with type 2 diabetes. Diabetes Care. 2003;26(2):421-6.
43. Kolybaba M, Tabil L, et al, editors. Biodegradable polymers: past, present, and future. An ASAE Meeting Presentation; 2003; North Dakota, USA.
44. Wikipedia: Biodegradable polymer:https://en.wikipedia.org/wiki/Biodegradable_polymer.
45. Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2(2):307-44.
46. Lendlein A, Sisson A. Handbook of biodegradable polymers: isolation, synthesis, characterization and applications: John Wiley & Sons; 2011.
47. Soppimath K, Aminabhavi T, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1):1-20.
48. Thakral S, Thakral N, et al. Eudragit®: a technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131-49.
49. Anderson J, Van Itallie C, et al. Physiology and function of the tight junction. Cold Spring HarbPerspect Biol. 2009;1(2):1-16.
50. Chuang E, Lin K, et al. Calcium depletion-mediated protease inhibition and apicaljunctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery. J Control Release. 2013;169(3):296-305.
51. Lin Y, Mi F, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules. 2007;8(1):146-52.
52. Yeh T, Hsu L, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials. 2011;32(26):6164-73.
53. Pappenheimer J. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J Membr Biol. 1987;100(1):137-48.
54. Win K, Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713-22.
55. Desai M, Labhasetwar V, et al. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997;14(11):1568-73.
56. Blanco E, Shen H, et al. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941-51.
57. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release. 2006; 114:1–14.
58. Chang CH, Lin YH, Yeh CL, Chen YC, Chiou SF, Hsu YM, Chen YS, Wang CC. Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules. 2010; 11:133–142.
59. Lin YH, Tsai SC, Lai CH, Lee CH, He ZS, Tseng GC. Genipin-cross-linked fucose-chitosan/ heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials. 2013; 34:4466– 4479.
60. Lin YH, Lin JH, Chou SC, Chang SJ, Chung CC, Chen YS, Chang CH. Berberine-loaded targeted nanoparticles as specific Helicobacter pylori eradication therapy: in vitro and in vivo study. Nanomedicine. 2015; 10:57–71.
61. Lin YH, Chen ZR, Lai CH, Hsieh CH, Feng CL. Active targeted nanoparticles for oral administration of gastric cancer therapy. Biomacromolecules. 2015; 16:3021–3032. [PubMed: 26286711]
62. Deng L, Dong H, Dong A, Zhang J. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity. Eur J Pharm Biopharm. 2015; 97:107–117.
63. Suwannateep N, Banlunara W, Wanichwecharungruang SP, Chiablaem K, Lirdprapamongkol K, Svasti J. Mucoadhesive curcumin nanospheres: biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. J Control Release. 2011; 151:176–182.
64. Pan-In P, Banlunara W, Chaichanawongsaroj N, Wanichwecharungruang S. Ethyl cellulose nanoparticles: clarithomycin encapsulation and eradication of H. pylori. CarbohydrPolym. 2014; 109:22–27.
65. Pan-in P, Tachapruetinun A, Chaichanawongsaroj N, Banlunara W, Suksamrarn S, Wanichwecharungruang S. Combating Helicobacter pylori infections with mucoadhesive nanoparticles loaded with Garcinia mangostana extract. Nanomedicine. 2014; 9:457–468.
66. Tachaprutinun A, Pan-In P, Samutprasert P, Banlunara W, Chaichanawongsaroj N, Wanichwecharungruang S. Acrylate-tethering drug carrier: covalently linking carrier to biological surface and application in the treatment of Helicobacter pylori infection. Biomacromolecules. 2014; 15:4239–4248.
67. Navabi N, Johansson ME, Raghavan S, Lindén SK. Helicobacter pylori infection impairs the mucin production rate and turnover in the murine gastric mucosa. Infect Immun. 2013; 81:829– 837.
Published
26/02/2024
Statistics
46 Views | 21 Downloads
Citatons
How to Cite
Alagarsamy, S., Kandasamy, S., Kandasamy, R., Ramachandran, N., Muthurasu, G., & Venkatesan, M. K. (2024). Polymeric nanoparticles for oral delivery of biopharmaceuticals: an overview. Journal of Innovations in Applied Pharmaceutical Science (JIAPS), 9(1), 1-8. https://doi.org/10.37022/jiaps.v9i1.565
Section
Review Article(S)