A review on vaccines-benefits and risks

P.Akhil Susmith1*, Soha Sanobar1, Vadluri Prathyusha1, Bhavya Sri1, Kabya Pratap2

1 Clinical Research Trainees, Clinosol Research Pvt Ltd, Hyderabad, Telangana
2 Business Development Officer, Clinosol Research Pvt Ltd, Hyderabad, Telangana

Abstract

The article outlines the benefits and risks of vaccines. Vaccine safety and myths and misinformation, the general review of the importance of the vaccines. Steps involved in the Development of Vaccines and also illustrates the immunization importance and its disadvantages. Administration of vaccines in different age groups. Classification of different available vaccines in the health market. Also stating the possible adverse drug reactions / potential side effects of the vaccines and their monitoring and management of adrs. We concluded that Vaccine acceptance must be widespread in order to provide herd immunity so that individuals who cannot be directly protected by vaccination are protected by communal immunity. The danger is quite low, and the advantages of vaccinations usually outweigh it.

Keywords: Vaccine safety, misinformation, immunity.

Introduction

A vaccine is outlined as “an inactivated or attenuated microorganism or a part of microorganism (nucleic acid, protein) that, once administered to the host, stimulates a protecting response of the cell within the system,” or “an immune biological substance designed to provide specific protection against a given illness [1].

Following Edward Jenner’s discovery of a smallpox vaccine, the names “vaccine” and “vaccinology” were coined. Smallpox vaccine was termed “variola vaccinae” by Jenner. Jenner is known as the “Father of Vaccinology” for his contributions to the field [1].

His pioneering efforts led to the formal declaration of the global elimination of smallpox in 1980. Vaccines have since been used to help control the disease. Vaccines have since helped to control the spread of numerous infectious illnesses, including polio, which has been eradicated in many countries. It is critical to shine awareness on the importance of vaccination and the benefits it provides, both individually and publically [2].

1. Vaccine Safety: Myths And Misinformation

Vaccine hesitancy has been recognized by the World Health Organization as one of the top ten global health concerns in 2019. The reasons why people choose not to vaccinate are multifaceted, but one of the major causes has been identified as a lack of faith in vaccine safety, motivated by worries about adverse outcomes. Healthcare professionals, particularly those in primary care, continue to have a significant impact on vaccination decisions. As a result, it is critical that people have easy access to reliable, evidence-based vaccination information. Although parents and patients have a variety of concerns about vaccine safety, the most common are concerns that adjuvants such as aluminium, preservatives such as mercury, inactivating agents such as formaldehyde, manufacturing residuals such as human or animal DNA fragments, and simply the sheer number of vaccines may be
overwhelming, weakening, or disrupting the immune system. Vaccines are among the most significant public health achievements of the modern era. It has been consistently proven that physician endorsement has a significant impact on vaccination choice making (Smith et al., 2017). As a result, it is critical that frontline health care providers grasp the relevant safety data and feel confident in providing solid recommendations based on scientific evidence [3].

Do Vaccines Contain Fragments Of Human And Animal DNA?
Because certain vaccinations are made with human embryo cell lines, leftover human DNA can be detected in a number of vaccines, including varicella, rubella, hepatitis A, and rabies vaccines. The possibility of vaccinated individuals being exposed to such DNA has been mentioned as a possible safety risk. The fact that human DNA is very sensitive to chemical processes, and most of the DNA involved in the creation of these vaccines is damaged in the process, is one of the most important of these factors. The ultimate product contains just trace quantities of leftover DNA, all of it fragmented, with none of it resembling a functional genome.

Are The Vaccine Adjuvants And Preservatives Safe?
Aluminum is utilized in vaccines as an adjuvant, a component that enhances immune response to vaccination antigens. Adjuvants enable for lower quantities of vaccination to be administered as well as fewer doses. Hence, a link between vaccine antigens and development of adverse neurodevelopmental outcomes, recent vaccine hesitancy have focused on safety of vaccine adjuvants and preservatives.

Are There Any Proven Severe Or Life-Threatening Side Effects Of Vaccines?
Vaccines are administered to healthy individuals, therefore they are held to a higher level of safety than medications used to treat illnesses. Anaphylaxis is a well-known uncommon but potentially fatal adverse effect of vaccinations [3].

2. Live Vaccine Contraindications
Patients with Immune Deficiencies
In general, children with immunological deficits may get inactivated vaccinations safely. Children with certain basic immunological weaknesses require pneumococcal and meningococcal vaccinations in addition to the normal childhood immunization regimen. Although some immune deficits make live virus vaccinations inappropriate, this is not true for every vaccine and every immune deficiency state. Primary Immune Deficiencies are conditions in which the immune system fails to function properly.

Acquired illnesses
Vaccination against influenza
Vaccination of Immunocompromised Children’s Household Contacts

Other contraindications
1) No pertussis-containing vaccination should be given to a patient who develops encephalopathy within 7 days of receiving a pertussis-containing vaccine.
2) No Haemophilus influenza type b (Hib) vaccination should be given to newborns under the age of 6 weeks.
3) No rotavirus vaccination should be given to children who have severe combined immunodeficiency or a history of rotavirus infection (intussusception).
4) No live viral vaccinations should be given to pregnant women [4].

3. Classification Or Types Of Vaccines [5]

Types of Vaccines

Fig 01: Types of Vaccines

4. Benefits Outweighing The Risks Of Vaccines
Prophylactic vaccination is one of the most affordable and effective types of medical intervention [9].
Since the first attempt at vaccination more than 200 years ago, discussion about the relative benefits and harms has battled on. However, the treatment of severe sickness and death overshadowed the argument. Today, the vaccination program’s previous accomplishments, such as the elimination of smallpox, the near eradication of polio, and the management of other illnesses, may risk its future success [6].
One of medicine’s main achievements has been the use of vaccination to prevent illness. Many vaccinations have been studied to establish their advantages, dangers, and costs. These studies have shown that the advantages of numerous vaccinations, including polio, pertussis, measles, mumps,
and rubella, outweigh the dangers and costs. As a result, the use of these vaccinations saves society money [7]. Vaccine hazards are adverse responses to immunization. Vaccine advantages include reduced morbidity and mortality from the illness for which a vaccine is administered. The direct costs of vaccination include those associated with the vaccine and its administration, as well as those associated with adverse reactions [7].

Vaccination’s Potential Benefits

Vaccines are thought to have the ability to prevent illnesses such as cancer, epilepsy, and many others, but further study is needed. Regardless of whether these therapies are a future possibility, there are several more useful applications for the extra money saved by getting vaccinated. Today, healthcare personnel can be protected from vaccine-preventable viruses that infect their sick patients. Healthcare professionals can get vaccinated and yet provide safe treatment to sick patients. They require protection not just from airborne viruses, but also from blood-borne infections spread by sharing needles. Another possible advantage of vaccines is that they can protect unborn infants. Vaccinated females can protect their unborn children from birth defects caused by some viruses, and vaccinated population can help eradicate disease for the benefit of future generations. These birth abnormalities can have a negative impact on quality of life and frequently necessitate the use of resources to assist improve outcomes.

The last advantage is that some viruses cause cancer. For instance, the human papillomavirus (HPV), has been linked to cervical cancer. As a result, it is critical to recognize the importance of vaccines in immunizing against illnesses and preventing the onset of adverse effects, some of which may be lifesaving [8].

Vaccination Potential Side Effects

- Concerning the potential harmful effects of vaccines, it is critical to evaluate the evidence supporting a link between immunizations and the development of autism.
- Guillain–Barré Syndrome (GBS), a paralysis that originates in the lower limbs and migrates up the body, is a potentially dangerous consequence of vaccination delivery.
- The legs become numb, and as it ascends the body, it leaves muscular paralysis behind.
- A possible adverse effect of vaccines might come from the vaccinations themselves.
- A vaccine works by exposing the body to inactivated, harmless microorganisms, as previously stated. However, the infection may become dangerous in the future in some situations.
- Varicella, often known as chickenpox, is a vaccine-preventable infection that is a frequent and typically harmless childhood ailment. Chickenpox, on the other hand, can lead to significant painful consequences in adults in the form of Zoster, more popularly known as shingles [8].

5. **Vaccine Herd Protection**

Vaccination ideally protects vulnerable people that are at high risk of infectious consequences. Vaccines for these groups are not usually efficacious enough. The herd effect, often known as herd immunity, is an interesting method of extending vaccination benefits beyond the immediately targeted population. It refers to the indirect protection of unvaccinated people, in which an increase in the prevalence of immunity caused by the vaccination inhibits the spread of infectious agents in susceptible population. The herd effect has helped to eradicate smallpox, decrease pertussis transmission, and protect against influenza and pneumococcal illness. Generally, substantial vaccination uptake is required for success [10].

Vaccine Herd Protection

Vaccine-induced herd effects include both vaccination herd immunity and vaccine herd protection, which are frequently used interchangeably. We use the term vaccine herd immunity to characterize the protection of non-vaccinated persons exposed to live vaccine organisms conveyed by vaccines shedding these organisms, resulting in a protective immunological response, as occurs with live oral polio vaccine. Herd immunity, applies to live vaccinations and is unaffected by whether the target illness is transferred from person to person or by some other means [11].

6. **Vaccine Safety In Children, Maternal Vaccination And Risks To Infants Morbidity**

- Childhood immunization has previously been associated to lower morbidity, stunting, and wasting in early children [13].
- Parents are primarily worried about the efficacy of vaccination for their own kid, weighing it against the risk of the child developing the disease if not vaccinated, as well as the likelihood of side effects [12].
- The difficulty is exacerbated by the fact that the risk of contracting most illnesses covered by the child vaccination programme is also influenced by herd immunity, or the percentage of the population that has been vaccinated (either by vaccination or natural infection).
- Pregnancy vaccination is a crucial element of maternity care, yet maternal immunization rates remain below national standards [15]

Vaccine administration during pregnancy raises worries among clinicians and patients about the danger of transferring a virus to a growing fetus. This is largely a
theoretical risk. As a result, live-virus vaccinations are typically contraindicated in pregnant women. According to the Centers for Disease Control and Prevention (CDC), if a pregnant woman receives a live-virus vaccine accidentally, or if a woman gets pregnant within four weeks after immunization, she should be advised about the potential consequences on the fetus. Regardless of whether live or inactivated vaccines are administered, physicians should consider vaccinating pregnant women based on the risks of immunization vs the advantages of protection. During nursing, physicians should reassure their patients that no vaccinations are contraindicated [14].

7. Vaccines In Elderly
Because of age-related changes in the immune system, most vaccinations are less immunogenic and efficient in the elderly. With more chances for health and travel in old age, the necessity of travel vaccinations for those over the age of 60 is expanding. Little is known regarding the immunogenicity and effectiveness of travel vaccinations in this age range. Despite significant improvements in vaccinology over the previous few decades, there is still room for improvement in vaccinations for the elderly. Innovative methods, such as viral vectors for antigen delivery, DNA-based vaccines, and novel adjuvants, notably toll-like receptor agonists, will aid in achieving optimum protection. Vaccination, however on the other hand, is the most efficient method for avoiding infectious diseases [16].

8. Impact Of Immunization In Recent Years
Over the last several decades, one of the most significant achievements in contemporary medicine has been the creation of safer and more effective vaccinations, particularly because of the favorable effects on public health. Vaccine development, licensing, and application as part of major, systematic vaccination programmes began in the early 20th century to address global inequalities in health. At the time of writing, however, access to vaccinations that prevent life-threatening infectious illnesses remained uneven for all babies, children, and adults across the world [17]. This is a worldwide issue that many individuals and organizations are working hard to address. As physicians and biomedical scientists, we frequently focus on the health advantages of vaccinations in terms of preventing illness and mortality from infectious diseases [18].

Conclusion
Vaccine acceptance must be widespread in order to provide herd immunity, so that individuals who cannot be directly protected by vaccination are protected by communal immunity. Vaccine education will be important in preserving the progress made in lowering or eradicating numerous infectious illnesses. Vaccination, like nearly other medical medication, has a very tiny chance of more or less significant harm. The danger is quite low, and the advantages of vaccinations usually outweigh it. It is necessary to raise public understanding that immunization benefits not only children, but also adults, particularly the elderly.

References
5. Sagar Aryal; Vaccines-Introduction and Types with Examples; Microbe Notes; 29 March 2021.
8. Shapiro, Y; Vaccinations: Weighing the Risks and Benefits; the Science Journal of the Lander College of Arts and Sciences; Volume 9, Issue 2, 2016.

