Green synthesis of nano particles from biodegradable waste extracts and their applications
Abstract
Nanoparticles have become a significant component of advancing industries from technology to medicine and the environment. However, the synthesis of nanoparticles can impact their ability to function effectively within real-world applications, and this can cause negative consequences. This novel approach that utilizes processes such as regulation, control, clean-up, and remediation aims to increase the eco-friendly level of these essential particles. By reducing harmful by-products produced through the process of conventional nanoparticle synthesis, there will be less toxic unsustainable products created. The use of natural resources such as organic systems will aid in achieving the goal of creating a greener and more sustainable economy; however, it will require industrial assistance with the adoption of these alternative approaches. Metallic nanoparticles can be synthesized in a more sustainable and ‘green’ process through utilizing plant alternatives or biological materials such as bacteria, fungi, algae, and plant extracts. This greener approach can be a single step or ‘one pot’ process which requires a lower energy level than conventional processes. Another benefit is that this reduction method is more cost-efficient. Green-synthesized nanoparticles have clinical applications. When silver nanoparticles were treated against S. aureus, their antibacterial activity was at its peak. Nanoparticles used as drug carriers are highly stable, can incorporate both hydrophobic and hydrophilic substances, and can be delivered via a variety of routes also including oral application and inhalation.
Downloads
References
2. Luo, L.; Xu, L.; Zhao, H. Biosynthesis of reduced gra-phene oxide and its in-vitro cytotoxicity against cervi-cal cancer (HeLa) cell lines. Mater. Sci. Eng. C 2017, 78, 198–202.
3. Vigneshwaran, N.; Ashtaputre, N.; Varadarajan, P.; Nachane, R.; Paralikar, K.; Balasubramanya, R. Bio-logical synthesis of silver nanoparticles using the fun-gus Aspergillus flavus. Mater. Lett. 2007, 61, 1413–1418.
4. Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.K.; Muniyandi, J.; Hariharan, N.; Eom, S.H. Biosynthesis, purification and characterization of silver nanoparticles using Es-cherichia coli. Colloids Surf. B Biointerfaces 2009, 74, 328–335. [Google Scholar] [CrossRef] [PubMed] Pérez-Beltrán, C.H.; García-Guzmán, J.J.; Ferreira, B.; Estevez-Hernandez, O.; Lopez-Iglesias, D.; Cubillana-Aguilera, L.; Link, W.; Stănică, N.; da Costa, A.M.R.; Palacios-Santander, J.M. One-Minute and Green Syn-thesis of Magnetic Iron Oxide Nanoparticles Assisted by Design of Experiments and High Energy Ultra-sound: Application to Biosensing and Immunoprecipitation. Mater. Sci. Eng. C 2021, 123, 112023.
5. Susmitha U, Kavitha R, Amareswarapu VS, Kiran Y, Mohammed G, Sriram N, Prasad PN. Effect of Pisonia Alba Root Extract On Cafeteria Diet-Induced Obesity In Rats. Journal of Pharmaceutical Negative Results. 2022 Dec. 1 [cited 2023 Feb. 15]; 3732-9.
6. Goudarzi, M.; Salavati-Niasari, M.; Yazdian, F.; Amiri, M. Sonochemical Assisted Thermal Decomposition Method for Green Synthesis of CuCo2O4/CuO Ceramic Nanocomposite Using Dactylopius Coccus for Anti-Tumor Investigations. J. Alloy. Compd. 2019, 788, 944–953.
7. Samuel, M.S.; Sumanb, S.; Venkateshkannanc; Selvarajand, E.; Mathimanie, T.; Pugazhendhif, A. Immobilization of Cu3(btc)2 on graphene oxide-chitosan hybrid composite for the adsorption and photocatalytic degradation of methylene blue. J. Photochem. Photobiol. B Biol. 2020, 204, 111809.
8. Samuel, M.S.; Jose, S.; Selvarajan, E.; Mathimani, T.; Pugazhendhi, A. Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cyto-toxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J. Photochem. Photo-biol. B Biol. 2020, 202, 111642.
9. Sriram N, Susmitha U, Kavitha R, Someshwaran S, Senthil Kumar B, Prasad PN, Shanta KA. Cognitive Enhancing and Antioxidant Activity Of Ethyl Acetate Soluble Fraction Of The Methanol Extract of Pisonia Alba Leaves In Scopolamine-Induced Amnesia. Jour-nal of Pharmaceutical Negative Results. 2022 Dec. 1 [cited 2023 Feb. 15]; 3740-9.
10. Rather, G.A.; Nanda, A.; Chakravorty, A.; Hamid, S.; Khan, J.; Rather, M.A.; Bhattacharya, T.; Rahman, M.H. Biogenic Green Synthesis of Nanoparticles from Living Sources with Special Emphasis on Their Biomedical Applications. Res. Sq. 2021.
11. Chakka, V.M.; Altuncevahir, B.; Jin, Z.Q.; Li, Y.; Liua, J.P. Magnetic nanoparticles produced by surfactant-assisted ball milling. J. Appl. Phys. 2006, 99, 08E912.
12. Mafuné, F.; Kohno, J.-Y.; Takeda, Y.; Kondow, T. Full Physical Preparation of Size-Selected Gold Nanoparti-cles in Solution: Laser Ablation and Laser-Induced Size Control. J. Phys. Chem. B 2002, 106, 7575–7577.
13. Purnachandra reddy G, Sriram N, Sarad Pawar Naik B, Kiran Kumar Y, Parameshwar H, Saravanan J, Susmitha U. Formulation and Evaluation of Sustained Release Matrix Tablets Of Glimipride Using Natural Polymers Tamarind Seed Mucilage And Guar Gum. Journal of Pharmaceutical Negative Results. 2022 Dec. 13 [cited 2023 Feb. 15]; 5256-67.
14. Barbillon, G.; Hamouda, F.; Bartenlian, B. Large Sur-face Nanostructuring by Lithographic Techniques for Bioplasmonic Applications. In Manufacturing Nanos-tructures; One Central Press: Altrincham, UK, 2014; pp. 244–262.
15. Vossen, J.L.; Kern, W.; Kern, W. Thin Film Processes II; Gulf Professional Publishing: Houston, TX, USA, 1991; Volume 2, ISBN 0127282513.
16. Islam, M.; Islam, M.S. Electro-Deposition Method for Platinum Nano-Particles Synthesis. Saidul, Electro-Deposition Method Platin. Nano-Particles Synth. Eng. Int. 2013, 1, 2.
17. Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano 2016, 10, 2436–2446.
18. Bilici, K.; Muti, A.; Sennaroğlu, A.; Acar, H.Y. Indocya-nine Green Loaded APTMS Coated SPIONs for Dual Phototherapy of Cancer. J. Photochem. Photobiol. B Biol. 2019, 201, 111648.
19. Geetha, R.; Ashokkumar, T.; Tamilselvan, S.; Govinda-raju, K.; Sadiq, M.; Singaravelu, G. Green synthesis of gold nanoparticles and their anticancer activ-ity. Cancer Nanotechnol. 2013, 4, 91–98.
20. Sivaranjini A, Maya R, Senthilkumar PK, Narayana Rao A, Phaneendra Pavan D, Gnanasekaran A, Sriram N, Susmitha U. Antimicrobial Properties of Morinda Reticulata Gamble Extracts against Antibi-otic-Resistant Pathogenic Bacteria and Toxin Producing Molds. Journal of Pharmaceutical Negative Results. 2023 Jan. 1 [cited 2023 Feb. 15];6633-9.
21. Fazal, S.; Jayasree, A.; Sasidharan, S.; Koyakutty, M.; Nair, S.V.; Menon, D. Green Synthesis of Anisotropic Gold Nanoparticles for Photothermal Therapy of Can-cer. ACS Appl. Mater. Interfaces 2014, 6, 8080–8089.
22. Parida, U.K.; Biswal, S.K.; Bindhani, B.K. Green Synthesis and Characterization of Gold Nanoparticles: Study of Its Biological Mechanism in Human SUDHL-4 Cell Line. Adv. Biol. Chem. 2014, 04, 360–375.
23. Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev. 2017, 122, 31–64.
24. Rajan, M.; Raj, V. Potential Drug Delivery Applications of Chitosan Based Nanomaterials. Int. Rev. Chem. Eng. 2013, 5, 145–155.
25. Susmitha U, Chiranjib B, Arunabha M, Sriram N, Sumithira G, Kameshwaran S, Sathya S. Anticata-leptic and Antiepileptic Activity of Ethanolic Extract of Leaves of Morinda Reticulate : A Study on Role of Dopaminergic System In Epilepsy In Albino Rats. Journal of Pharmaceutical Negative Results. 2022 Dec. 10 [cited 2023 Feb. 15];:4987-91.
26. Dev, A.; Binulal, N.S.; Anitha, A.; Nair, S.V.; Furuike, T.; Tamura, H.; Jayakumar, R. Preparation of Poly (Lactic Acid)/Chitosan Nanoparticles for Anti-HIV Drug Delivery Applications. Carbohydr. Polym. 2010, 80, 833–838.
27. Siddiqi, K.S.; Rahman, A.U.; Tajuddin; Husen, A. Bio-genic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application. Nanoscale Res. Lett. 2016, 11, 498.
28. Malekigorji, M.; Curtis, A.D.M.; Hoskins, C. The Use of Iron Oxide Nanoparticles for Pancreatic Cancer Ther-apy. J. Nanomed. Res. 2014, 1, 00004.
29. Sathish Mohan B, Seetharam P, Manga Raju I, Suresh P, Satyanarayana G, Sangaraju S, Susmitha U, Tejes-wararao D. Nanohybrid material of Co–TiO2 and optical performance on methylene blue dye under visible light illumination. Hybrid Advances. 2022 Dec 1; 1: 100008-16.
30. Wu, L.; Cai, X.; Nelson, K.; Xing, W.; Xia, J.; Zhang, R.; Stacy, A.J.; Luderer, M.; Lanza, G.M.; Wang, L.V. A Green Synthesis of Carbon Nanoparticles from Honey and Their Use in Real-Time Photoacoustic Imag-ing. Nano Res. 2013, 6, 312–325.
31. Huang, H.; Xu, Y.; Tang, C.-J.; Chen, J.-R.; Wang, A.-J.; Feng, J.-J. Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. New J. Chem. 2014, 38, 784–789.
32. Parajuli D, Susmitha U, Murali N, Ramakrishna A, Suryanarayana B, Samatha K. Synthesis and charac-terization MXene-Ferrite nanocomposites and its ap-plication for dying and shielding. Inorganic Chemistry Communications. 2023 Feb; 148: 110319-33.
33. Bhunia, S.K.; Saha, A.; Maity, A.; Ray, S.C.; Jana, N.R. Carbon Nanoparticle-based Fluorescent Bioimaging Probes. Sci. Rep. 2013, 3, 1473.
34. Raja, S.; Ramesh, V.; Thivaharan, V. Green biosynthe-sis of silver nanoparticles using Calliandra haemato-cephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab. J. Chem. 2017, 10, 253–261.
35. Zheng, Y.; Wang, Z.; Peng, F.; Fu, L. Application of biosynthesized ZnO nanoparticles on an electro-chemical H2O2 biosensor. Braz. J. Pharm. Sci. 2016, 52, 781–786.
36. Varun, S.; Daniel, S.K.; Gorthi, S.S. Rapid sensing of melamine in milk by interference green synthesis of silver nanoparticles. Mater. Sci. Eng. C 2017, 74, 253–258.
37. Rambabu Ch, Susmitha U, Ritesh V, Ramakrishna A, Murali N, Shivanarayana Ch, Parajuli D, Suryanara-yana B, Batoo KM, Sajjad H, Lakshmi Narayana PV. Effect of La3+and Ni2+ substitution on Sr1-xLaxFe12-yNiyO19 hexaferrite structural, magnetic, and dielectric properties. Materials Science and Engineering: B. 2023 March; 289: 116257-64,
38. Maiti, S.; Barman, G.; Laha, J.K. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanopar-ticles. Appl. Nanosci. 2016, 6, 529–538.
39. Hoyos, L.E.S.-D.; Sánchez-Mendieta, V.; Vilchis-Nestor, A.R.; Camacho-López, M.A. Biogenic Silver Nanoparti-cles as Sensors of Cu2+ and Pb2+ in Aqueous Solu-tions. Univers. J. Mater. Sci. 2017, 5, 29–37.
40. Koteswara Rao P, Vikram Babu B, Rama Krishna A, Sushma Reddi M, Sathish Mohan B, Anjani Devi K, Susmitha U, Raghava Rao, T. Green Synthesis of Silver Nanoparticles using Litsea glutinosa L. Leaves and Stem Extracts and their Antibacterial Efficacy. Journal of Water and Environmental Nanotechnology. 2022 Dec; 7(4): 363-369. doi: 10.22090/jwent.2022.04.003.
41. Rojas-Perez, A.; Adorno, L.; Cordero, M.; Ruiz, A.; Mercado-Diaz, Z.; Rodriguez, A.; Betancourt, L.; Velez, C.; Feliciano, I.; Cabrea, C. Biosynthesis of Gold Nanoparticles Using Osmudaria Obtusiloba Extract and Their Potential Use in Optical Sensing Applica-tion. Austin J. Biosens. Bioelectron. 2015, 1, 1–9.
42. Vijaya Bharathi R, Raju M.K, Susmitha U, Raghavendra V, Parajuli D, Suryanarayana B, Yo-natan Mulushoa S, Murali N, Samatha K. Cu2+ substituted Mg-Co ferrite has improved dc electrical resistivity and magnetic properties. Inorganic Chemistry Communications. 2023 March 1; 149: 110452-8. https://doi.org/10.1016/j.inoche.2023.110452.
43. Praveena, V.D.; Kumar, K.V. A Thiocyanate Sensor Based on Ecofriendly Silver Nanoparticles Thin Film Composite. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 741–752.
44. Nagasree K.L.V, Suryanarayana B, Raghavendra V, Susmitha U, Tulu Wegayehu M, Kavyasri D, Murali N, Raju M.K, Parajuli D, Samatha K. Influence of Mg2+ and Ce3+ substituted on synthesis, structural, mor-phological, electrical, and magnetic properties of Co-balt nano ferrites. Inorganic Chemistry Communica-tions. 2023 March; 149: 110405-12 https://doi.org/10.1016/j.inoche.2023.110405.
45. Tiquia-Arashiro, S.; Rodrigues, D. Thermophiles and Psychrophiles in Nanotechnology. In Extremophiles: Applications in Nanotechnology; Springer: Ber-lin/Heidelberg, Germany, 2016; pp. 89–127.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.