Plasmids for Efficient Production of Recombinant Proteins in E. coli
Abstract
Plasmids play a crucial role in the transmission of genetic information across different types of bacteria. Plasmids transfer pathogenicity and survival genes to the host bacterium, allowing the bacteria to adapt to new environments and grow. Several plasmids of differing sizes have been recovered from numerous bacterial species. Plasmids may be used to genetically modify bacteria for a variety of reasons, including the generation of recombinant proteins. Escherichia coli is the most often utilised bacterium for the production of recombinant proteins owing to its quick growth rate, low cost, high yield of recombinant proteins, and simple scale-up procedure. To boost the synthesis of heterologous proteins in E. coli, a number of plasmids have been used. Diverse plasmids have been devised and built to address challenges such as protein refolding, E. coli codon use, a lack of post-translational modifications such as glycosylation, and insufficient recovery of functionally viable recombinant proteins. Recent technical advancements that have made it possible for the E. coli expression system to create more complex proteins, such as glycosylated recombinant proteins and therapeutic antibodies.
Downloads
References
2. Weisberg AJ, Miller M, Ream W, Grünwald NJ, Chang JHJPTotRSB. Diversification of plasmids in a genus of pathogenic and nitrogen-fixing bacteria. 2022;377(1842):20200466.
3. Al-Hejin AM, Bora RS, Ahmed MMMJP. Plasmids for optimizing expression of recombinant proteins in E. coli. 2019;13.
4. Balasubramaniam SJNCN. Opportunistic routing through conjugation in bacteria communication nanonetwork. 2012;3(1):36-45.
5. Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, et al. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. 1986;48(1):119-31.
6. Hill JE, Myers AM, Koerner T, Tzagoloff AJY. Yeast/E. coli shuttle vectors with multiple unique restriction sites. 1986;2(3):163-7.
7. Verch T, Pan Z-K, Paterson YJI, immunity. Listeria monocytogenes-based antibiotic resistance gene-free antigen delivery system applicable to other bacterial vectors and DNA vaccines. 2004;72(11):6418-25.
8. Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent MJAtib, et al. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. 2013;1(1).
9. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde AJMcf. Microbial factories for recombinant pharmaceuticals. 2009;8(1):1-8.
10. Rai M, Padh HJCs. Expression systems for production of heterologous proteins. 2001:1121-8.
11. Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PRJAm, et al. Synthetic promoter libraries for Corynebacterium glutamicum. 2014;98(6):2617-23.
12. Kaur J, Kumar A, Kaur JJIJoBM. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. 2018;106:803-22.
13. Schumann W, Ferreira LCSJG, Biology M. Production of recombinant proteins in Escherichia coli. 2004;27:442-53.
14. Jonasson P, Liljeqvist S, Nygren PAk, Ståhl SJB, biochemistry a. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. 2002;35(2):91-105.
15. Schofield DM, Templar A, Newton J, Nesbeth DNJBP. Promoter engineering to optimize recombinant periplasmic Fab′ fragment production in Escherichia coli. 2016;32(4):840-7.
16. Chen H, Bjerknes M, Kumar R, Jay EJNar. Determination of the optimal aligned spacing between the Shine–Dalgarno sequence and the translation initiation codon of Escherichia coli m RNAs. 1994;22(23):4953-7.
17. Park YS, Seo SW, Hwang S, Chu HS, Ahn J-H, Kim T-W, et al. Design of 5′-untranslated region variants for tunable expression in Escherichia coli. 2007;356(1):136-41.
18. Mauger DM, Cabral BJ, Presnyak V, Su SV, Reid DW, Goodman B, et al. mRNA structure regulates protein expression through changes in functional half-life. 2019;116(48):24075-83.
19. Redko Y, Aubert S, Stachowicz A, Lenormand P, Namane A, Darfeuille F, et al. A minimal bacterial RNase J-based degradosome is associated with translating ribosomes. 2013;41(1):288-301.
20. McNulty DE, Claffee BA, Huddleston MJ, Kane JFJPe, purification. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. 2003;27(2):365-74.
21. Yarian C, Marszalek M, Sochacka E, Malkiewicz A, Guenther R, Miskiewicz A, et al. Modified Nucleoside Dependent Watson− Crick and Wobble Codon Binding by tRNALysUUU Species. 2000;39(44):13390-5.
22. Liu CC, Cellitti SE, Geierstanger BH, Schultz PGJNp. Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded genetic code. 2009;4(12):1784-9.
23. Carrió MM, Villaverde AJFl. Role of molecular chaperones in inclusion body formation. 2003;537(1-3):215-21.
24. Nishihara K, Kanemori M, Yanagi H, Yura TJA, microbiology e. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. 2000;66(3):884-9.
25. Bothmann H, Plückthun AJJoBC. The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA: I. Increased functional expression of antibody fragments with and without cis-prolines. 2000;275(22):17100-5.
26. 26. Baeshen MN, Al-Hejin AM, Bora RS, Ahmed MM, Ramadan HA, Saini KS, et al. Production of biopharmaceuticals in E. coli: current scenario and future perspectives. 2015;25(7):953-62.
27. 27. Huang C-J, Lin H, Yang XJJoIM, Biotechnology. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. 2012;39(3):383-99.
28. 28. Yim S, Jeong K, Chang H, Lee SJB, Engineering B. High-level secretory production of human granulocyte-colony stimulating factor by fed-batch culture of recombinant Escherichia coli. 2001;24(4):249-54.
29. 29. Reilly DE, Yansura DG. Production of monoclonal antibodies in E. coli. Current trends in monoclonal antibody development and manufacturing: Springer; 2010. p. 295-308.
30. 30. Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, et al. Design and production of bispecific antibodies. 2019;8(3):43.
31. 31. Lee YJ, Lee DH, Jeong KJJAm, biotechnology. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli. 2014;98(3):1237-46.
32. 32. Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TRJPs. Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. 2006;15(1):182-9.
33. 33. Braun P, Hu Y, Shen B, Halleck A, Koundinya M, Harlow E, et al. Proteome-scale purification of human proteins from bacteria. 2002;99(5):2654-9.
34. 34. Bell MR, Engleka MJ, Malik A, Strickler JEJPS. To fuse or not to fuse: what is your purpose? 2013;22(11):1466-77.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.